THE Cl_2 PHOTOSENSITIZED DECOMPOSITION OF O_3 : THE REACTIONS OF CIO AND OCIO WITH O_3

WANEE WONGDONTRI-STUPER, R. K. M. JAYANTY*, R. SIMONAITIS and JULIAN HEICKLEN

Department of Chemistry and Ionosphere Research Laboratory, The Pennsylvania State University, University Park, Pa. 16802 (U.S.A.)

(Received March 17, 1978; in revised form May 31, 1978)

Summary

Cl₂ was photolyzed in the temperature range 254 - 296 K with 366 nm radiation in the presence of O₃. O₃ was removed with quantum yields of 5.8 ± 0.5 , 4.0 ± 0.3 , 2.9 ± 0.3 and 1.9 ± 0.2 at 24, 10, 0 and -21 °C respectively, independent of the initial O₃ or Cl₂ concentration, the extent of conversion or the absorbed intensity I_a . The Cl₂ removal quantum yields were 0.11 ± 0.2 at 24 °C for Cl₂ conversions of about 30%, much higher than expected from mass balance considerations based on the initial quantum yield of 0.089 ± 0.013 for OCIO formation at 24 °C. The final chlorine-containing product was Cl₂O₇ which was observed. It was produced at least in part through the formation of OCIO as an intermediate which was also observed with an initial quantum yield of Φ_i {OCIO} = $2.5 \times 10^3 \exp[-(3025 \pm 625)/T]$ independent of [O₃] or I_a . The results are consistent with the reaction sequence

$$Cl + O_3 \rightarrow ClO + O_2 \tag{1}$$

 $2ClO \rightarrow ClOO + Cl$ (2a)

$$\rightarrow \operatorname{Cl}_2 + \operatorname{O}_2 \tag{2b}$$

$$\rightarrow$$
 OClO + Cl (2c)

$$ClOO + M \rightarrow Cl + O_2 + M \tag{3}$$

$$OClO + O_3 \rightarrow sym - ClO_3 + O_2 \tag{5a}$$

$$2 \operatorname{sym-ClO}_3 + \operatorname{O}_3 \to \operatorname{Cl}_2 \operatorname{O}_7 + \operatorname{O}_2 \tag{6}$$

The relative importance of the channels for reaction (2) at 296 K are the following: $k_{2a}/k_2 = 0.63$; $k_{2b}/k_2 = 0.34$; $k_{2c}/k_2 = 0.032$. Also, $k_{2c}/k_{2b} =$

^{*}Present address: Systems and Measurements Department, P.O. Box 12194, Research Triangle Institute, Research Triangle Park, N.C. 27709, U.S.A.

 $2.5 \times 10^3 \exp \{-(3025 \pm 625)/T\}$. The upper limit for the rate coefficient was found to be less than 1×10^{-18} cm³ s⁻¹ for channels (4a) and (4b):

$$ClO + O_3 \rightarrow OClO + O_2 \tag{4a}$$

$$\rightarrow ClOO + O_2 \tag{4b}$$

The addition of nitrogen had no effect, but oxygen reduced $-\Phi{O_3}$ for unknown reasons and several possibilities are discussed. At temperatures below 296 K the equilibrium

$$ClO + OClO + M \neq Cl_2O_3 + M$$
(7, -7)

(5)

becomes apparent.

The reaction of OClO with O_3 was also studied by direct mixing of OClO and O_3 in a quartz vessel in the temperature range 253 - 296 K, and in the Cl_2-O_3 system by monitoring OClO decay in the dark in the temperature range 264 - 296 K:

 $OCIO + O_3 \rightarrow products$

The Arrhenius rate coefficient recommended for reaction (5) is

$$k_5 = 2.3 \times 10^{-12} \exp\left(\frac{-4730 \pm 630}{T}\right) \text{ cm}^3 \text{ s}^{-1}$$

The low values of k_4 and k_5 obtained in this study indicate that reactions (4) and (5) are probably not important in atmospheric chemistry.

Introduction

An understanding of the Cl_2 photosensitized decomposition of O_3 is of relevance to the understanding of the atmospheric ClO_x cycle. This system was extensively investigated 30 - 40 years ago $[1 \cdot 10]$, but the details of the mechanism remained obscure. The only recent paper on this subject is by Davidson and Williams [11] who studied the Cl_2-O_3 system by measuring stable products. The only product observed was Cl_2O_7 , but the mechanism proposed for its formation is somewhat dubious. We have reinvestigated this system in order (1) to clarify the mechanism of the process and (2) to obtain rate coefficients for the reactions of CIO and OCIO with O_3 .

For convenience, we list here the pertinent reactions that must be considered:

$$Cl_{2} + h\nu \rightarrow 2Cl \qquad \text{rate} = I_{a}$$

$$Cl + O_{3} \rightarrow ClO + O_{2} \qquad (1)$$

$$2ClO \rightarrow ClOO + Cl \qquad (2a)$$

$$\rightarrow Cl_{2} + O_{2} \qquad (2b)$$

$$\rightarrow$$
 OClO + Cl (2c)

$$CIOO + M \neq Cl + O_2 + M \tag{3, -3}$$

$$ClO + O_3 \rightarrow OClO + O_2$$
 (4a)

$$\rightarrow \text{CIOO} + \text{O}_2 \tag{4b}$$

$$OClO + O_3 \rightarrow sym-ClO_3 + O_2$$
(5a)

$$-ClO + 2O_2$$
 (5b)

$$2 \operatorname{sym-ClO}_3 + \operatorname{O}_3 \to \operatorname{Cl}_2\operatorname{O}_7 + \operatorname{O}_2 \tag{6}$$

$$ClO + OClO + M \neq Cl_2O_3 + M$$
 (7, -7)

Reaction (3) is reversible, but the equilibrium is so far to the right that the back reaction can play no role except possibly in the presence of a great excess of oxygen.

The reactions of ClO with O_3 , even if relatively slow, are of potential importance in determining the effect of the ClO_x cycle on stratospheric O_3 . Very little information is available on the reaction of ClO with O_3 :

$$ClO + O_3 \rightarrow OClO + O_2 \tag{4a}$$

$$ClO + O_3 \rightarrow ClOO + O_2 \tag{4b}$$

Using a discharge flow system with mass spectrometric detection of ClO, Clyne *et al.* [12] obtained a possible value of 5×10^{-15} cm³ s⁻¹ for reaction (4) if it occurs, this value being a definite upper limit. Lin *et al.* [13], however, found in a steady state photolysis study of the Cl₂-O₃ system that reaction (4) is unimportant with $k_4 < 1 \times 10^{-18}$ cm³ s⁻¹.

The kinetics of the reactions of OCIO and O_3 had never been studied directly when our work was initiated; however, the very early work did suggest that OCIO reacts with O_3 to produce CIO_3 :

$$OCIO + O_3 \rightarrow CIO_3 + O_2$$
(5a)
$$\rightarrow CIO + 2O_2$$
(5b)

It is unlikely that this reaction, even if relatively fast and assuming that OCIO is present in the atmosphere, would be of much importance in view of the probably rapid photolysis of OCIO; nevertheless, it seemed appropriate to obtain some definitive information.

Reaction (5) was studied directly by Birks *et al.* [14] who mixed OClO with O_3 and monitored their decay spectrophotometrically. They reported $k_5 = (1.20 \pm 0.15) \times 10^{-19} \text{ cm}^3 \text{ s}^{-1}$ at 298 K. In the work reported here reaction (5) was studied directly under pseudo first-order conditions by mixing OClO with excess O_3 and in the Cl_2-O_3 photolysis by monitoring the decay of OClO from its steady state value when the radiation was terminated.

2. Experimental

 Cl_2 was photolyzed with 366 nm radiation in the presence of O_3 to produce Cl atoms. The 366 nm radiation was obtained from either a Hanovia U-shaped Type SH medium pressure mercury lamp or an Illumination Industries 200 W (Type 202-1003) high pressure mercury arc lamp. The 366 nm line was isolated by passing the radiation through a Corning CS 7-37 filter before it entered the reaction cell.

Conventional high vacuum lines utilizing Teflon stopcocks with Viton O-rings were used. Pressures were measured with a silicone oil manometer, a Wallace and Tiernan gauge or an Alphatron vacuum gauge. The cylindrical reaction vessels for the UV monitoring experiments were either several 200 cm³ quartz cells, 10 cm long and 5 cm in diameter, or a 32 cm³ Pyrex cell, 2 cm in diameter and 10 cm long, with quartz windows. The latter cell was used only for measuring O₃ removal. For the IR measurements a cylindrical Pyrex cell, 10 cm long and 5 cm in diameter, with KCl or NaCl windows was used.

 O_3 removal rates were determined by following the O_3 decay as a function of the irradiation time by UV and IR absorption. At high O_3 pressures a Cary 14 spectrometer was employed. For low O_3 pressures a dual-beam spectrometer with phase-sensitive detection which has been described previously [15] was employed, except that the monitoring tungsten lamp was replaced with a Phillips (93109E) mercury resonance lamp with a Cl₂ gas filter and a Corning CS 7-54 filter. A Perkin Elmer 21 or 521 spectrometer was used for the IR measurements.

The reaction mixture absorption was also monitored at about 400 nm (300 W tungsten lamp with a Corning CS 7-59 filter) as a function of irradiation time using the dual-beam spectrometer. Initially the absorption increased linearly, then leveled off and finally reached a steady state (corresponding to several millitorr of OCIO). The steady state value slowly increased with continued irradiation until near the end of the reaction, *i.e.* when nearly all the O₃ was consumed; the absorption then increased to a sharp maximum and finally declined to zero upon continued irradiation. Condensation of the photolysis mixture at this maximum absorption and distillation at -130 °C to remove the Cl₂ left a greenish-yellow product which was identified to be OCIO by its absorption spectrum.

The initial rates of OClO formation and its steady state concentration were determined from the initial increase in absorption and the initial steady state value respectively. The effective absorption cross section for the lampfilter combination was determined using known amounts of OClO in order to obtain absolute OClO concentrations.

The rate of the reaction of OClO with O_3 was determined in two ways. In the first method Cl_2-O_3 mixtures were photolyzed until some OClO (usually the steady state value) was produced; the light was then turned off and the OClO decay monitored as a function of time. This method could be used only at room temperature because at lower temperatures Cl_2O_3 complicated the kinetics. In the second method OClO and excess O_3 were mixed directly in the quartz cell and the OClO decay was monitored as a function of reaction time. In this direct technique experiments were possible at low temperatures because Cl_2O_3 formation could not occur. However, at lower temperatures it was necessary to warm the cell to room temperature and pump the cell for some time after every run and clean it periodically with HNO₃ solution in order to obtain the "minimum" rate of reaction. If this procedure was not followed, the rate of the reaction was always significantly higher for subsequent runs.

 Cl_2 removal rates (Table 5) were determined in the photolysis experiments by measuring the chlorine concentration at 366 nm with the dualbeam spectrometer. In order to observe a significant change in the Cl_2 pressure (about 30%; signal/noise about 10%) irradiations of approximately 1 h duration were required. Because of instrument base line drift over the long irradiation times, the change in Cl_2 concentration was determined by observing the change in the signal level during the short pump-out time of the cell. To ensure that OCIO did not interfere in the measurements, excess O_3 was added at the end of some experiments and the mixture was allowed to stand for some time to allow for the reaction of OCIO with O_3 .

The O₂ production rates were measured by photolyzing O₃ and Cl₂ in a 200 cm³ quartz cell. The O₂ produced was measured by condensing the reaction mixtures in a trap at -196 °C and measuring the pressure of the non-condensable O₂ with an oil manometer. The O₂ was then removed by pumping on the reaction mixture at -196 °C. The reaction mixture was warmed to -189 °C and the residual O₃ was collected at -196 °C. The pressure of the unconverted O₃ was then measured with an oil manometer. Calibration for expansion was done with comparable known pressures of O₂.

 ClO_3 also absorbs at 366 nm; however, it was calculated using the known cross section that the maximum expected ClO_3 concentration would not contribute significantly to the absorption at 366 nm. Cl_2O_7 also does not interfere, because it does not absorb at 366 nm.

The formation of the compound Cl_2O_7 was determined by photolyzing a mixture of Cl_2 (16.2 Torr) and O_3 (8.3 Torr) in a Pyrex bulb of volume 1 l for 5 h. The reaction mixture was transferred to a cell with KCl windows and the IR spectrum over the range 650 - 2000 cm⁻¹ was obtained with a Perkin–Elmer 21 or 521 spectrometer. The only new band observed was at 1310 cm⁻¹. In this frequency range gaseous Cl_2O_7 has only three bands centered at 1310 cm⁻¹ (strong), 1025 cm⁻¹ (weak) and 690 cm⁻¹ (weak) [16]. The band at 1310 cm⁻¹ was assumed to be due to Cl_2O_7 , since no other known chlorine oxide has a band at this frequency. Presumably the weaker bands were not observed because of the low Cl_2O_7 pressure. The Cl_2O_7 could be kept in the IR cell overnight without any detectable decomposition. Cl_2O_7 formation was never observed when the photolysis was done directly in the IR cell, but bands due to ClO_4^- at 1100 cm⁻¹ and 650 cm⁻¹ were always observed. Actinometry was done by photolysis of an optically equivalent amount of azomethane. The N₂ produced was measured by gas chromatography using a 5 Å molecular sieve column. The absorption cross sections for Cl₂ and azomethane were determined to be 4.2×10^{-20} and 5.7×10^{-20} cm² respectively, independent of temperature. The quantum yield Φ {N₂} of N₂ for this system is known to be 1.0 [17].

Low temperatures were produced by passing cold nitrogen gas through a Styrofoam box in which the reaction vessel was enclosed. The temperature was measured with an iron-constantan thermocouple.

OCIO was prepared by slowly passing Cl_2 over a column packed with glass beads and dry AgClO₃ at 80 ± 10 °C. OCIO was separated from the excess Cl_2 by distillation from -130 °C to -160 °C and then further distillation from -60 °C to -196 °C. O₃ was prepared by a Tesla coil discharge of O₂. It was purified by distillation from -189 °C (liquid argon) to -196 °C.

The oxygen and nitrogen were C.P. grade (Matheson & Co.) and were used without further purification. The chlorine (Matheson high purity research grade) was first degassed at -196 °C and then purified by distillation from -130 °C to -160 °C.

3. Results

3.1. Cl_2 photosensitized decomposition of O_3

$3.1.1. O_3$ removal quantum yields

The photolysis of O_3-Cl_2 mixtures at 366 nm and 25 °C leads to the removal of O_3 and Cl_2 and to the production of O_2 and Cl_2O_7 as final products, with OClO produced as an intermediate. When the photolysis is performed in an IR cell with either NaCl or KCl windows, Cl_2O_7 was not observed but ClO_4^- was deposited on the windows.

The O₃ removal quantum yields $-\Phi{O_3}$ were monitored during the reaction until the O_3 was consumed (more than 90% removal) and were found to be zero order in O_a pressure. Many experiments were done covering a wide range of initial O_3 pressures (0.007 - 14 Torr) and absorbed intensities I_a (7.6 × 10⁻¹⁵ - 2.3 × 10⁻¹² cm⁻³ s⁻¹). Values of $-\Phi{O_3}$ measured by UV absorption are given in Table 1. The results are invariant to changes in either $[O_3]_0$ or I_a , and as mentioned previously are zero order in $[O_3]$ during any experiment. The values of $-\Phi{O_3}$ are 5.9 ± 0.6 in the 200 cm³ cells and 5.7 \pm 0.33 in the 32 cm³ cell at 24 °C, and 4.0 \pm 0.3 at 10 °C, 2.9 \pm 0.3 at 0 °C and 1.9 \pm 0.2 at -21 °C in the 200 cm³ cells. (The uncertainties are the mean deviations.) For the one run in the 32 cm^3 cell in which the cell was coated with NaCl, $-\Phi{O_3}$ is also 5.7. The addition of up to 680 Torr N₂ had no effect in the 200 cm³ cell (low O₃ pressures), but reduced $-\Phi{O_3}$ to 4.7 in the 32 cm³ cell (high O_3 pressures). This reduction may not be statistically significant. The addition of O_2 does make a difference and reduced $-\Phi{O_3}$. At 2 - 5 Torr O_3 in the 32 cm³ cell, this reduction is to 3.7.

TABLE 1

[O ₃] ₀ (Torr)	[Cl ₂] (Torr)	[O ₂] (Torr)	[N2] (Torr)	$\frac{10^{-13} I_{a}}{(\text{cm}^{-3} \text{ s}^{-1})}$	$-\Phi{O_3}$
Experiment	ts in a 200 cm ³ o	cell at 24 ± 3 °(,		
0.007	11.6	640	_	0.050	1.7
0.007	11.6		—	0.050	4.7
0.009	11.6		—	0.050	4.7
0.010	11.0		_	0.048	5.0
0.010	11.6		—	0.016	4.8
0.018	11.6			0.050	6.1
0.032	11.6	640	_	0.050	2.6
0.041	11.0			0.048	5.8
0.048	8.6			3.2	5.5
0.065	3.1		—	0.014	5.8
0.073	11.6		<u> </u>	0.016	5.4
0.076	11.3	640		0.050	2.9
0.077	28.8			0.104	6.1
0.112	3.31		-	1.23	5.6
0.117	11.6			0.050	6.4
0.126	3.6		_	0.016	5.6
0.141	11.6	640	_	0.050	3.8
0.145	10.7	_	_	0.046	6.1
0.150	11.8		_	0.052	6.5
0.152	11.6		<u> </u>	0.016	4.8
0.153	11.6	85		0.050	4.6
0.155	11.6		100	0.050	5.9
0.165	11.6	_	680	0.050	5.6
0.171	11.6		<u> </u>	0.050	5.7
0.175	28.8		<u> </u>	0.104	7.1
0.176	11.6	_	_	0.050	5.8
0.179	11.2		_	0.049	7.0
0.194	11.8			0.052	6.7
0.314	11.6	540		0.050	4.4
0.345	11.6	640	_	0.050	4.7
0.385	11.2			0.049	7.0
0.403	11.6		_	0.050	6.7
0.480	11.6	_		0.050	6.3
0.482	11.1	_	_	4.1	6.2
0.534	10.3	—		3.8	6.2
Experiment	ts in a 200 cm ³ c	ell at 11.1 ± 0.	5 °C		
0.098	11.5	_	_	4.9	3.7
0.099	11.1		—	4.7	3.4
0.106	11.6		—	4.9	3.8
0.114	11.1			4.7	3.8
0.146	4.90	-	-	2.1	4.2
0.147	11.1	—	—	4.7	4.1

Quantum yields of O_3 removal as measured by UV absorption in the Cl₂-photosensitized decomposition of O_3 at 366.0 nm

(continued)

[O ₃] ₀ (Torr)	[Cl ₂] (Torr)	[O ₂] (Torr)	[N2] (Torr)	$\frac{10^{-13} I_{a}}{(\text{cm}^{-3} \text{ s}^{-1})}$	Φ{O ₃ }
0.162	17.9			8.3	3.6
0.174	10.5		_	4.5	3.9
0.185	10.8			4.6	3.9
0.244	11.8		_	5.0	4.2
0.306	11.3	-		4.8	4.2
0.340	6.07	—	_	2.6	4.5
0.369	21.2	-		9.0	3.8
0.449	11.1			4.7	4,7
Experimen	ts in a 200 cm ³ c	cell at 0.2 ± 0.3	°C		
0.113	11.1			5.7	2.4
0.124	3.93	—	—	2.0	2.7
0.149	20.0		—	11.3	2.6
0.154	18.2	_		9.3	2.6
0.180	11.1	—	_	5.7	2.7
0.193	5.14	_	_	2.6	3.3
0.220	11.1	_		5.7	2.9
0.363	8.64	_	_	4.4	2.7
0.429	20.9			10.7	3.2
0.449	6.00	—		3.1	3.0
0.494	10.7			5.5	3.4
0.537	11.1	_	_	5.7	3.2
0.547	11.1	_	—	5.7	2.9
Experimen	ts in a 200 cm ³ c	ell at21.4 ± (0.3 °C		
0.131	10.6			9.2	1.9
0.155	10.7	_	—	9.3	1.7
0.188	11.4	_	_	9.9	1.9
0.395	10.7	_		9.3	1.9
0.413	3.97			3.4	1.1
0.473	10.7	_	_	9.3	1.8
0.465	14.4	—	—	15.1	2.2
Experimen	ts in the 32 cm ³	cell at 24 ± 3 °	С		
1.32	5.91		_	0.98	5.64
2.20	5.30			1.26	5.47
2.33	6.88			0.18	5.10
2.33	5.95	—	—	0.16	6.30
2.41	6.22			0.43	5.60
2.41	6.69	_	—	0.46	5.40
2.57 ^a	6.46	—		3.0	5.71
2.64	5.91	600		0.98	3.80
2.80	6.53	—	_	0.58	5.02
2.96	6.26	—	—	0.16	6.30
3.03	5.76		-	1.95	6.05

170

(continued)

[O ₃] ₀ (Torr)	[Cl ₂] (Torr)	[O ₂] (Torr)	[N ₂] (Torr)	$\frac{10^{-13} I_{a}}{(\text{cm}^{-3} \text{ s}^{-1})}$	—Φ{O ₃ }
3.11	. 6.77	<u></u>	600	1.00	4.72
3.27	6.78	<u></u>		1.13	5.54
3.27	5.29	_	_	3.3	6.27
3.66	6.07	_	600	1.00	4.72
3.73	6.22	_	—	3.9	5.78
5.45	6.10	600	<u> </u>	1.00	3.71
5.76	6.15	600	—	2.1	3.65

 TABLE 1 (continued)

^aWalls coated with NaCl.

TABLE 2

Quantum yields of O_3 removal as measured by IR spectroscopy in the Cl₂-photosensitized decomposition of O_3 at 366.0 nm and 24 °C

[O ₃] ₀ (Torr)	[Cl ₂] (Torr)	[O ₂] (Torr)	[N ₂] (Torr)	$\frac{10^{-13} I}{(\text{cm}^{-3} \text{ s}^{-1})}$	$-\Phi{O_3}$
4.5	5.85	_	_	1.35	8.8
10.1	5.83			1.33	10.1
14.4	5.80		-	1.39	8.8
14.5	5.64	600		1.37	9.6
14.6	5.53	-	600	1.33	10.0
14.8	5.85	—	600	1.42	11.1
14.8	6.06	—		0.35	9.2
14.8	5.22			0.31	9.6
14.8	5.85	—	600	1.38	12.4
14.8	5.64	—	_	1.33	10.1
14.8	27.0		—	4.7	7.6
14.8	27.0	600	_	4.7	8.1
14.8	27.0	600	_	4.7	6.8
14.8	27.0	600	_	4.7	6.7
14.8	5.53		_	1.34	10.5
14.9	5.32	600	_	1.29	8.9
14.9	27.2		600	4.7	8.3
14.9	5.32	600		1.26	9.2

At the low O_3 pressures in the 200 cm³ cells, $-\Phi{O_3}$ is reduced to 4.7 at 400 mTorr O_3 and falls to 1.7 as $[O_3]$ is reduced to 7 mTorr.

Our results agree qualitatively with those of Norrish and Neville [10] and Lin *et al.* [13] who found that $-\Phi{O_3} \approx 6$ in the absence of oxygen but that large amounts of oxygen (or chlorine) depressed the value.

For the runs in one of the 200 cm³ cells it was noted that, when azomethane was kept in the cell for a long time before removal preceding the photolysis of Cl_2-O_3 mixtures, $-\Phi\{O_3\}$ decreased significantly to about 2.2. Under these conditions the presence of oxygen had no effect, but the

Fig. 1. OCIO profiles in the photolysis of Cl_2-O_3 mixtures: the points are experimental values and the solid curves are computer simulations with the following rate coefficients.

T (K)	275.5	295
$k_1 \ (\text{cm}^3 \text{s}^{-1})$	1.06 x 10 ⁻¹¹	1.13 × 10 ⁻¹¹
$k_{2b} (cm^3 s^{-1})$	2.09×10^{-14}	$1.42 imes 10^{-14}$
k_{2c}^{2} (cm ³ s ⁻¹)	1.19×10^{-15}	1.40×10^{-15}
$k_{2} (cm^{3} s^{-1})$	4.4×10^{-14}	4.4×10^{-14}
$k_{\rm B} ({\rm cm}^3{\rm s}^{-1})$	$8.0 imes 10^{-20}$	2.65×10^{-19}
$k_{7}[M]$ (cm ³ s ⁻¹)	1.00×10^{-15}	
$k_{-7}[M](s^{-1})$	0.25	_

presence of nitrogen increased $-\Phi\{O_3\}$ to about 3.3. Subsequent to these runs the cell was washed with HNO₃ solution. A deposit was removed as indicated by a yellow color imparted to the HNO₃ solution. Also the transmittance at 2537 Å increased after washing the cell. Experiments with the freshly washed cell at first gave erratic values of $-\Phi\{O_3\}$ of about 3 - 4 and the rate of reaction varied throughout the course of the reaction. After some conditioning of the cell $-\Phi\{O_3\}$ became more reproducible at values of 4 - 5. These experiments show that at low values of $[O_3]$ the walls can inhibit the Cl_2 -photosensitized decomposition of O_3 . No such effects were observed at high pressures of O_3 (above 2 Torr).

Further evidence that surfaces can influence the reaction comes from the work in the IR cells with KCl windows in which ClO_4^- was observed. The O₃ removal quantum yields for these runs are presented in Table 2, and they are larger than in the quartz or Pyrex cells. The average values and the mean deviations for $-\Phi\{O_3\}$ are 9.34 ± 0.74 in the absence of oxygen or nitrogen, 10.45 ± 1.30 in the presence of nitrogen and 8.22 ± 1.02 in the presence of oxygen. Some runs were done at relatively high Cl₂ pressures (27 Torr) in this group, and the inhibiting effect of Cl₂ reported by earlier workers [10, 13] is discernible. For one run at 27 Torr Cl_2 in the absence of oxygen or nitrogen $-\Phi{O_3} = 7.6$. In the presence of nitrogen the runs at low and high $[Cl_2]$ are 12.4 and 8.3 respectively; in the presence of oxygen $-\Phi{O_3} = 9.2 \pm 0.2$ at low $[Cl_2]$ and 7.2 ± 0.6 at high $[Cl_2]$. The effect of oxygen is not so apparent.

3.1.2. OClO formation quantum yields and OClO decay in the dark

A typical OCIO growth profile during irradiation and decay profile when the light is turned off is shown in Fig. 1. The OCIO grows linearly initially and then levels off to a steady state value. When the light is turned off the OCIO decays (O_3 is still present in excess) exponentially at 295 K. At lower temperatures there is a clear induction period for OCIO decay in the dark (Fig. 1).

The OCIO formation quantum yields were obtained from the initial OCIO growth rate determined from the initial slopes of the absorption profiles. The results are presented in Table 3 (column 5). From Table 3 it is apparent that Φ_i {OCIO} is independent of the O₃ pressure in the range of 4 - 13 Torr, though there may be a small reduction in the presence of excess nitrogen or oxygen. Φ_i {OCIO} clearly decreases with decreasing temperature. An Arrhenius plot of Φ_i {OCIO} obtained from initial rates is presented in Fig. 2. The plot is reasonably linear and leads to the Arrhenius expression

$$\Phi_{i}$$
{OClO} = 2.5 × 10³ exp $-\left(\frac{3025 \pm 625}{T}\right)$

The addition of up to 600 Torr of nitrogen or oxygen reduced Φ_i {OClO} slightly at 298 K and 275 K.

Figure 1 shows that OClO decays when the radiation is terminated. Presumably the decay is due to reaction with O_3 :

 $OCIO + O_3 \rightarrow products$

Typical first order plots of OClO decay after the radiation is terminated are shown in Fig. 3. It is apparent that the plot is linear only at 296 K. Below this temperature there is a significantly increasing deviation from linearity with decreasing temperature. The data at 296 K are summarized in Table 3 in the form of the first order coefficient k_5 . The average value is $(3.02 \pm 0.49) \times 10^{-19}$ cm³ s⁻¹. The data at the lower temperatures cannot be summarized in this form and are not given in Table 3. However, in Section 4 these data are employed in the computer analysis of the proposed mechanism.

The OCIO profile at 298 K shown in Fig. 1 can be analyzed quantitatively for self-consistency over the entire region (light and dark) by integrating the differential equations for OCIO formation and decay. The differential equation during irradiation is

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\mathrm{OClO} \right] = \Phi_{\mathrm{i}} \left\{ \mathrm{OClO} \right\} I_{\mathrm{a}} - k_{\mathrm{5}} \left[\mathrm{O}_{\mathrm{3}} \right] \left[\mathrm{OClO} \right] \tag{I}$$

[0 ₃] (Torr)	[Сl ₂] (Топ)	Temp. (°C)	$\frac{10^{-13} I_{\rm a}}{({\rm cm}^{-3} {\rm s}^{-1})}$	Φ ₁ {000} ª	Φ ₁ {0010} ^b	[OCl0] (mTort)	$\frac{10^{19} k_5^{\rm c}}{({\rm cm}^3 {\rm s}^{-1})}$	$10^{19} k_5^d$ (cm ³ s ⁻¹)
$T = 24 \pm$	3 °C							
3.42	7.78	24.0	4.34	0.076	0.061	3.38	2.61	2.68
3.40	6.87	25.0	3.84	0.14	0.12	4.45	2.24	3.34
3.81	12.9	23.7	7.19	0.079	0.085	5.55	2.81	2.52
4.08	12.8	22.0	7.12	0.083	0.087	5.69	2.22	2.39
4.66°	16.8	23.0	9.38	0.067	0.057	4.48	3.04	2.83
5.48^{f}	13.7	27.1	7.67	0.070	0.075	2.43	3.35	3.78
5.91	13.4	27.0	7.47	0.13	0.12	3.61	2.28	4.17
6.96 ^f	14.1	27.0	7.08	0.090	0.086	4.43	3.80	2.59
5.95	13.4	23.1	7.47	0.11	0.13	3.30	2.82	3.93
5.97 ^f	14.0	27.0	7.81	0.074	0.083	3.90	3.72	2,40
6.38	13.1	23.0	7.30	0.085	0.095	3.67	2.93	2.49
6.87	13.8	27.2	7.71	0.070	0.13	2.23	3.35	3.40
7.08 ^f	13.9	27.0	7.76	0.074	0.072	3.33	2.93	2.35
7.90	13.0	23.4	7.28	0.12	0.14	2.71	3.14	3.84
7.93 ^f	13.0	26.7	7.45	0.068	0.11	2.39	3.66	2.54
7.94	14.3	22.4	7.99	0.087	0.095	2.78	2.62	2.96
8.01	13.6	26.9	7.58	0.10	0.13	2.80	3.49	3.17
8.21	13.0	22.0	7.28	0.083	0.090	2.66	2.60	2.60
8.91	13.2	22.0	7.39	0.079	0.085	2.35	2.62	2.62
9.41 ^f	13.2	27.1	7.39	0.063	0.16	1.76	3.48	2.64
9.57	13.4	27.0	7.47	0.10	0.14	2.54	3.76	2.89
9.61 ¹	14.9	27.0	8.32	0.075	0.079	2.61	3.03	2.40
10.3	14.0	21.7	7.84	0.092	0.13	2.73	3.44	2.43
10.5	15.2	27.2	8.49	0.072	0.069	2.37	3.37	2.36
10.7 ¹	16.1	27.0	9.01	0.067	0.069	2.32	3.77	2.35
11.3	14.2	21.2	7.91	0.080	0.081	1.78	2.44	2.96
11.4	13.0	23.5	7.28	0.075	0.098	2.10	2.80	2.14
12.5 ^e	13.5	23.8	7.55	0.092	0.080	1.29	3.53	4.06

Photolysis of Cl₂-O₃ mixture at 366 nm

TABLE 3

TABLE 3 (continued)

175

Fig. 2. Arrhenius plot of Φ_i {OClO} in the photolysis of Cl₂–O₃ mixtures.

Fig. 3. First order plots of OClO decay in the dark after the photolysis of Cl_2-O_3 mixtures. The reaction conditions are as follows.

Temperature (K)	[O ₃] (Torr)	[Cl ₂] (Torr)
296.1	8.91	13.2
283.1	9.45	12.8
275.5	9.26	12.8
264.0	7.20	12.6

Fig. 4. Plots of [OClO] vs. exp $(k_5[O_3]t)$ for selected data at 24 ± 3 °C.

and integration gives

$$[OClO]_{t} = \frac{\Phi_{i}\{OClO\}I_{a}}{k_{5}[O_{3}]} (1 - \exp\{-k_{5}[O_{3}]t\})$$
(II)

A plot of [OCIO] versus $\exp\{-k_5[O_3]t\}$ should be linear with a slope and intercept of $\Phi_i\{OCIO\}I_a/k_5[O_3]$. Figure 4 shows that the plots at 24 ± 3 °C are reasonably linear as required. Values of $\Phi_i\{OCIO\}$ obtained from the slopes of these plots are presented in Tables 3 and 4. They are in good agreement with the values obtained from the initial growth rates. At lower temperatures plots of eqn. (II) are not linear because of Cl_2O_3 formation (see Section 4).

The steady state expression for OCIO during irradiation is

$$[OClO]_{ss} = \frac{\Phi_i \{OClO\} I_a}{k_5 [O_3]}$$
(III)

Values of k_5 computed from eqn. (III) using the observed values of [OCIO] are also presented in Table 3. At 24 °C these values are in good agreement with those obtained from the decay plots.

3.1.3. Cl_2 removal and O_2 formation quantum yields

The Cl₂ removal quantum yields $-\Phi{Cl_2}$ were measured at 296 K for several experiments with $[O_3]_0 = 15.4 \pm 1.6$ Torr, $[Cl_2]_0 = 1.16 \pm 0.16$ Torr and $I_a = (2.82 \pm 0.44) \times 10^{13}$ photons cm⁻³ s⁻¹. To make the measurements, about 30% of the Cl₂ was consumed. For these conditions $-\Phi{Cl_2} = 0.11$ ± 0.02 independent of the absence or presence of 650 Torr of nitrogen or oxygen.

[O ₃] (Torr)	[OClO] ₀ (mTorr)	Temperature (K)	$10^{19} k_5 (cm^3 s^{-1})$
$T = 296.3 \pm 1.7 \text{ K}$	······		
4.82	54.9	297.7	2.67
4.90	37.3	297.7	2.69
5.45	59.7	297.6	3.02
5.91	43.5	297.4	2.98
5.99	38.2	297.6	2.82
7.39 ^a	40.2	295.0	3.36
7.43 ^a	42.2	293.4	3.12
8.36	42.8	293.2	3.44
8.40	35.0	295.0	3.39
8.71	44.1	296.5	3.48
11.1	65.9	297.7	3.06
17.5	53.1	297.4	3.24
19.2	31.1	295.1	2.79
$T = 273.4 \pm 1.0 \text{ K}$			
2.84	161	273.5	0.73
4.47	88.4	275.5	0.89
4.75	201.0	273.0	0.92
5.41	75.1	274.5	0.73
5.52	40.9	273.0	0.62
6.02	34.9	273.0	0.73
8.48	50.3	274.0	0.92
8.79	43.5	273.5	0.74
8.87	48.3	273.0	0.93
9.49	43.5	273.3	0.94
9.49	43.5	273.1	0.87
11.2	41.5	273.0	0.92
23.8	44.2	272.8	0.94
29.0	41.5	273.0	0.88
$T = 262.0 \pm 1.0 \text{ K}$			
2.53	131.3	262.0	0.48
4.40	49.05	263.0	0.48
4.59	153.7	262.0	0.41
6.42	58.75	261.4	0.46
7.70	131.3	261.7	0.45

^aWith 100 Torr nitrogen also present.

The ratio of O₂ produced to O₃ lost was also measured at 20 ± 1 °C for O₃ conversions ranging from 78 to 100%. The initial O₃ pressures ranged from 5.76 to 12.7 Torr and the initial Cl₂ pressures ranged from 6.85 to 25.9 Torr. In all experiments $I_a = 2.25 \times 10^{12}$ photons cm⁻³ s⁻¹ per torr of

TABLE 4

Reaction of OClO with O₃

Fig. 5. First order plots of OClO decay in the presence of excess O_3 (direct reaction of OClO with O_3).

 Cl_2 . The ratio of O_2 formed to O_3 consumed was about 1.5 in all experiments (1.39 - 1.55) as expected for a catalyzed decomposition of O_3 . The average value of $\Phi\{O_2\}$ at 20 °C is 8.6 ± 0.3 in the absence of added oxygen or nitrogen. The uncertainties due to pressure measurements by the expansion method are less than 2%.

3.2. Kinetics of the OClO + O_3 reaction

The kinetics of the OClO + O_3 reaction were studied by direct mixing of OClO with excess O_3 (pseudo first order conditions). The OClO decay was observed to be first order in OClO in the presence of excess O_3 . Typical first order plots at four temperatures are shown in Fig. 5. The rate coefficients k_5 obtained from the plots are presented in Table 4. The value of k_5 is independent of the O_3 pressure; thus the reaction is first order in O_3 . An Arrhenius plot of k_5 is shown in Fig. 6. The best straight line through the three data points gives an Arrhenius expression of $k_5 = 6.1 \times 10^{-13} \exp{\{-4308/T\}}$ cm³ s⁻¹. Also shown in Fig. 6 are the data points obtained from the steady state of OClO in the photolysis of Cl_2-O_3 mixtures. The Arrhenius expression which best fits these data is $1.9 \times 10^{-11} \exp{\{-5360/T\}}$ cm³ s⁻¹. The average of the two Arrhenius expressions is $2.3 \times 10^{-12} \exp{\{-(4730 \pm 630)/T\}}$ cm³ s⁻¹, and this is the value we recommend.

At room temperature both determinations give essentially the same value for k_5 ((3.08 ± 0.25) × 10⁻¹⁹ cm³ s⁻¹ from direct mixing and (2.88 ± 0.59) × 10⁻¹⁹ cm³ s⁻¹ from the steady state value of OCIO in the Cl₂-O₃ photolysis). Furthermore the value obtained in the dark decay of OCIO after the photolysis of Cl₂-O₃ mixtures is (3.02 ± 0.49) × 10⁻¹⁹ cm³ s⁻¹ in excellent agreement with the other two values. De More [18] has made

3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00

Fig. 6. Arrhenius plots of k_5 : \circ , from the direct OClO-O₃ reaction; \times , from the steady state OClO values during photolysis.

two independent determinations of k_5 at room temperature, both of which give 3.0×10^{-19} cm³ s⁻¹ in excellent agreement with our three determinations. The value for k_5 of $(1.20 \pm 0.15) \times 10^{-19}$ cm³ s⁻¹ obtained by Birks *et al.* [14] at 298 K appears to be too low.

4. Discussion

The low values of Φ_i {OClO} and $-\Phi$ {Cl₂} as well as the ratio of O₂ produced to O₃ consumed indicate that the photolysis is primarily a photosensitized decomposition of O₃. The mechanism of the photolysis can be discussed in terms of a set of reactions which have been shown to be important. There is no doubt that the initial photolysis act is

$$Cl_2 + h\nu (366 \text{ nm}) \rightarrow 2Cl \qquad (rate = I_a)$$

followed by the well-known reaction

$$Cl + O_3 \rightarrow ClO + O_2$$

where $k_1 = 2.5 \times 10^{-11} \exp(-250/T) \text{ cm}^3 \text{ s}^{-1} [19 \cdot 24]$.

Now for the sake of argument we can consider two extreme cases: (a) the ClO radicals produced in reaction (1) do not react with O_3 under any conditions; (b) the ClO radicals always react with O_3 . Thus for case (a)

$$2ClO \rightarrow Cl + ClOO$$
(2a)
$$\rightarrow Cl_{0} + O_{0}$$
(2b)

(1)

$$\rightarrow OClO + Cl \tag{2c}$$

$$ClOO + M \rightarrow Cl + O_2 + M \tag{3}$$

and for case (b)

1

\$

$$ClO + O_3 \rightarrow OClO + O_2 \tag{4a}$$

$$\rightarrow Cl + 2O_2$$
 (4b)

and in either case (a) or case (b) the subsequent reactions of OCIO will be

$$OCIO + O_3 \rightarrow sym - CIO_3 + O_2$$
 (5a)

$$2\mathrm{ClO}_3 + \mathrm{O}_3 \to \mathrm{Cl}_2\mathrm{O}_7 + \mathrm{O}_2 \tag{6}$$

since Cl_2O_7 is a product and OClO is an intermediate. Reaction (5) might also give $ClO + 2O_2$ as products, but the data of Birks *et al.* [14] are inconsistent with the occurrence of this channel. We ignore this channel since it does not significantly alter the kinetic analysis.

The ClOO radical is unstable and decomposes rapidly at room temperature [12] via reaction (3), but the reaction with O_3 cannot be ruled out *a priori* (see later). Reaction (5) is known. Presumably the reaction leads to symmetrical ClO₃ initially, but an asymmetrical form cannot be ruled out.

The subsequent fate of ClO_3 is not entirely clear. Early workers observed both Cl₂O₆ and Cl₂O₇ as products of Cl₂-photosensitized decomposition of O_3 [25]. The relative amounts of the oxides appeared to depend on the experimental conditions. At higher temperatures (about 30 °C) Cl_2O_7 is favored, whereas with photosensitization at lower temperatures Cl_2O_6 could be observed [25]. It seems likely that under conditions such that ClO_3 formation is rapid and the temperature low, Cl_2O_6 condensation would be favored which suggests that the reaction of ClO_3 with O_3 is slow and has an activation energy. Recently, however, Davidson and Williams [11] could detect only ClO_4^- after hydrolysis of the reaction products which indicates that Cl_2O_7 was the only product even though they worked under conditions similar to those of the early workers which led to Cl₂O₆ formation. In the present work ClO_3 formation was not observed by spectroscopic methods ([ClO₃] < 20 mTorr), but the formation of Cl₂O₇ and the reaction of OClO with O_3 requires that ClO_3 must have been present as an intermediate.

Mechanisms (a) and (b) are mutually exclusive, because the data show that $-\Phi{O_3}$ is independent of $[O_3]$ and I_a . If both mechanisms were operating simultaneously $-\Phi{O_3}$ would depend on $[O_3]$, because reaction (4) involves O_3 but reaction (2) does not, and on I_a , because reaction (2) is bimolecular in radicals and reaction (4) is not. Therefore our task is to decide whether mechanism (a) or mechanism (b) is operative.

First let us consider that mechanism (b) is operating. This mechanism predicts that $-\Phi{O_3} = \Phi{O_2} = 7$, $\Phi{OClO} = 2$ and $-\Phi{Cl_2} = 1$. The measured $-\Phi{O_3}$ is nearly 7, but $\Phi{O_2}$ is 50% greater than $-\Phi{O_3}$, $\Phi_i{OClO} = 0.089 \pm 0.013$ and $-\Phi{Cl_2} = 0.11 \pm 0.02$ at 297 K; clearly mechanism (b) is not important and need not be considered any further. Mechanism (a) leads to the following rate laws:

$$\Phi_{i}\{\text{OClO}\} = \frac{2}{1 + 2k_{2b}/k_{2c}}$$
(IV)

$$-\Phi\{O_3\} = \frac{4 + 3k_{2c}/k_2}{2k_{2b}/k_2 + k_{2c}/k_2}$$
(V)

$$-\Phi{\rm Cl_2} = \Phi_{\rm i}{\rm OClO}/2 \tag{VI}$$

With measured values of $-\Phi \{O_3\} = 5.8$ and $\Phi_i \{OClO\} = 0.089$ at 297 K, the values computed from eqns. (IV) and (V) are $k_{2a}/k_2 = 0.63$, $k_{2b}/k_2 = 0.34$ and $k_{2c}/k_2 = 0.032$. Since $-\Phi \{O_3\}$ is nearly pressure independent these ratios are also pressure independent over the range of pressures employed in this study. The fact that $-\Phi \{Cl_2\} \neq \Phi_i \{OClO\}/2$ is discussed later. $\Phi_i \{OClO\}$ was determined as a function of temperature (Table 4 and Fig. 2); therefore since $\Phi_i \{OClO\}$ is very nearly k_{2c}/k_{2b} , the Arrhenius expression for k_{2c}/k_{2b} is the same as for $\Phi_i \{OClO\}$ or $k_{2c}/k_{2b} = 2.5 \times 10^3 \exp\{-(3025 \pm 625)/T\}$.

The ratio of k_2/k_{2b} is obtained from the study of the temperature dependence of $-\Phi\{O_3\}$. At low temperatures $k_2/k_{2b} \approx 0.5(-\Phi\{O_3\})$. The values of k_2/k_{2b} are 1.99 at 11 °C, 1.45 at 0 °C and 1.0 at -21 °C. This implies that reaction (2) proceeds predominantly through channel (2b) at low temperatures.

The large value of the pre-exponential factor A_{2c}/A_{2b} suggests that reaction channels (2b) and (2c) proceed through very different transition states. It is reasonable to assume that reaction (2b) involves a four-center transition state whereas reaction (2c) is an atom abstraction reaction with a linear transition state.

The reactions of ClO with itself have been studied recently in some detail, but there is still controversy about the relative importance of the three channels at higher pressures. Basco and Dogra [26, 27] have interpreted their flash photolysis data at high pressures (above 75 Torr argon) in terms of reaction (2b) exclusively. Johnston *et al.* [28], working at low light intensities, found a pressure effect on ClO disproportionation and proposed the reaction

 $2ClO + M \rightarrow Cl_2 + O_2 + M$

In a more recent paper Wu and Johnston [29] confirmed the effect of total pressure on their results but now feel that the pressure effect may actually be associated with other reactions in their system or that at low light intensity the mechanism of ClO disproportionation differs from that at high light intensity.

At low pressures, however, Clyne and coworkers [12, 30, 31] have conclusively shown that reaction (2a) is dominant and in their most recent paper [12] have shown that the distribution at low pressures is as follows: reaction (2a), 95%; reaction (2c), 5%. They have also done computer modelling of the results of Basco and Dogra and find that their results can be reinterpreted in terms of reaction (2a) as the dominant channel contrary to the interpretation of Basco and Dogra.

Recently Clyne and Watson [32] have re-evaluated all the data in terms of reactions (2a) and (2c) only and recommend the expressions

$$k_{2a} = 1.2 \times 10^{-12} \exp\left(\frac{-9.8 \text{ kJ mol}^{-1}}{RT}\right) \text{ cm}^3 \text{ s}^{-1}$$

$$k_{2c} = 2.1 \times 10^{-12} \exp\left(\frac{-18.3 \text{ kJ mol}^{-1}}{RT}\right) \text{ cm}^3 \text{ s}^{-1}$$

although the data do not exclude reaction (2b) occurring to some extent and k_{2a} may really represent $k_{2a} + k_{2b}$.

It is not clear how all these results can be brought into harmony. However, it seems likely to us that reactions (2a) and (2b) are important under all pressure conditions. The data of Clyne *et al.* [12] are not inconsistent with a contribution from both reactions (2a) and (2b), and in fact in our system reaction (2b) must be the major termination step. It is possible that Cl atom formation may have been overlooked in the work of Basco and Dogra [26, 27].

The upper limit for k_4 may be computed by requiring that reaction (4) be negligible compared with reaction (2) which has a room temperature rate coefficient of 2.3×10^{-14} cm³ s⁻¹ according to Clyne and Watson [32] and of 4.4×10^{-14} cm³ s⁻¹ according to Watson [33]. Even at our highest value of $[O_3]/I_a^{1/2} = 1.6 \times 10^{11}$ (s cm⁻³)^{1/2} there is no variation of Φ_i {OClO}. For this to be true, $k_4 < (k_2/k_{2b}^{1/2})(I_a^{1/2}/[O_3])$ or k_4 must be less than 1×10^{-18} cm³ s⁻¹, a conclusion reached by Lin *et al.* [13]. The low value of k_4 is also consistent with the upper limit of about 5×10^{-15} cm³ s⁻¹ obtained by Clyne *et al.* [12] and 5×10^{-14} cm³ s⁻¹ obtained by Birks *et al.* [14]. However, Clyne *et al.*, using a discharge flow technique, found that in the presence of O₃ more OClO was produced than could be explained by reaction (2c) alone and considered it probable that their upper limit was the actual rate coefficient.

At temperatures below 297 K the OCIO decay profiles in the dark show an induction period (Fig. 1) and the integrated growth curves (eqn. (II)) are not linear which indicates that the mechanism thus far outlined is not complete at lower temperatures. These observations can be interpreted in terms of the equilibrium

$$ClO + OClO + M \neq Cl_2O_3 + M$$
 (7, -7)

The Cl_2O_3 acts as a reservoir of OCIO leading to the slow initial rate of OCIO depletion upon the termination of light.

As a test of this hypothesis, profiles for OCIO were calculated for all temperatures by numerically integrating the rate equations for CIO and Cl_2O_3 . The only assumption made in this computation was that CI has its

steady state value. An adaptive pattern search routine [34] was used to integrate the rate equations. This algorithm varies the rate constants k_7 , k_{-7} , k_{2c} and k_5 such that the mean square error between the calculated and the experimental values of OCIO is minimized. The OCIO growth is controlled initially by the parameter k_{2c}/k_{2b} and the decay is controlled by k_5 . However, absolute values for k_{2c} and k_{2b} are needed for the computation. These were obtained from the values of Φ_1 {OCIO} and $-\Phi$ {O₃} and the literature value for k_2 (4.4 × 10⁻¹⁴ cm³ s⁻¹) [33].

In order to test the validity of this integration method room temperature profiles for OCIO were also fitted, and in this case the values k_7 and k_{-7} used were zero (which is equivalent to having the equilibrium shifted completely to dissociation).

At 275 K and 264 K, k_7 was varied from 1.00×10^{-11} to 1.00×10^{-16} cm³ s⁻¹ and k_{-7} from 10.00 to 0.01 s⁻¹. k_{2c} was allowed to vary within $\pm 20\%$ of the calculated value from Φ_{1} {OClO}, $-\Phi$ {O₃} and k_{2} . k_{5} was varied within the range of values obtained from the steady state of OClO and from the direct mixing experiments. Typical computer profiles together with the experimental profiles are shown in Fig. 1. The overall errors of the computed profiles were within $\pm 20\%$ of the experimental profiles. The average value for k_7 [M] is $(1.2 \pm 0.4) \times 10^{-15}$ cm³ s⁻¹ at 275.5 K and (5.5 ± 1.5) $\times 10^{-16}$ cm⁻³ s⁻¹ at 264 K. The average value for k_{-7} [M] is (0.19 ± 0.08) s^{-1} at 275.5 K and (0.08 ± 0.03) s^{-1} at 264 K. The results are the average of six runs at 275.5 K and four runs at 264 K. At both temperatures the average pressures for the runs used to determine k_7 [M] and k_{-7} [M] were 20.2 ± 3.2 Torr. When converted to third order and second order rate coefficients we obtain $k_7 = 1.70 \times 10^{-33}$ and 1.15×10^{-33} cm⁶ s⁻¹ at 275.5 and 264 K respectively, and $k_{-7} = 2.68 \times 10^{-19}$ and 1.08×10^{-19} cm³ s⁻¹ at 275.5 and 264 K respectively.

We estimate that these values are accurate to within a factor of 2. Of course, at 296 K Cl_2O_3 formation is not important because of the rapid reverse reaction, and below 264 K the reactions are too slow to obtain meaningful results.

The values of k_7 show a slight positive activation energy, although this may just reflect the error in the measurements. The rate coefficients for k_{-7} are consistent with a bond dissociation enthalpy of about 12 kcal mol⁻¹ for Cl₂O₃.

So far we have neglected a discussion of $-\Phi{\{Cl_2\}}$ in interpreting the data. Mass balance considerations require that in the initial part of the experiment $-\Phi{\{Cl_2\}} = \Phi_i \{OClO\}/2$. In our experiments $-\Phi{\{Cl_2\}}$ was measured, by necessity, for large conversions and it was found to be much greater than $\Phi_i \{OClO\}/2$. Possibly secondary reactions may be involved in which the higher oxides of chlorine $(ClO_3, ClO_4 \text{ and possibly } Cl_2O_5 \text{ or } Cl_2O_6)$ react either with Cl_2 or ClO to produce Cl_2O_7 . This may be a surface reaction. The details of such a reaction cannot be determined from our data.

If the reaction removing additional Cl_2 does not involve OCIO as an intermediate, then the OCIO concentration is not affected by it. However,

if additional OCIO is produced, as seems likely, then the steady state concentration of OCIO should show an accelerated rise as the reaction proceeds toward completion. We attempted to monitor [OCIO] for long conversions, but the uncertainty in the measurements due to instrument drift made it difficult to determine if [OCIO] increased more than would be expected owing to the depletion of O_3 . ([OCIO] as is inversely proportional to $[O_3]$ even if OCIO is not an intermediate in the secondary reaction.)

Finally the effect of O_2 on $-\Phi{O_3}$ must be considered. Our results indicate that at room temperature $-\Phi{O_3}$ drops from 5.8 to 3.7 at 2 - 5 Torr O_3 and high intensity, to 4.7 at 400 mTorr O_3 at low intensity and 1.7 as $[O_3]$ is reduced to 7 mTorr. These results are qualitatively in agreement with the early work of Norrish and Neville [10], and the fall-off from 5.8 to 4.7 has been observed by Lin *et al.* [13]. Thus there remains little doubt that the effect is real.

However, the interpretation of this result poses some difficulties and no definitive answer can be given. One possibility is the sequence

$$Cl + O_2 + M \rightarrow ClOO + M$$
 (-3)

$$ClOO + O_3 \rightarrow asym - ClO_3 + O_2$$
 (8)

Such a scheme requires that $-\Phi{\{Cl_2\}}$ be enhanced in the presence of O_2 , which is not observed. Perhaps asym-ClO₃ reverts to Cl₂. Another possibility is

$$ClO + O_2 + M \rightarrow asym - ClO_3 + M$$
 (9)

$$ClO^* + O_2 + M \rightarrow asym - ClO_3 + M$$
 (10)

where the asterisk refers to vibrational excitation. This scheme also requires that $-\Phi{Cl_2}$ increases in the presence of O_2 , unless asym-ClO₃ reverts to Cl₂. Both of the above schemes would lead to a lower value of $\Phi_i{OClO}$ in the presence of O_2 , which may in fact be the case (see Table 4). Numerous mundane possibilities exist (wall effects), a discussion of which would be purely speculative and serve no useful purpose. Our results also show that at low $[O_3]$ (less than 100 mTorr) $-\Phi{O_3}$ approaches 2 in the presence of O_2 . It is possible that the O_2 contains a minute quantity of impurity which at low $[O_3]$ competes for the Cl atoms, but no evidence for this possibility is available and any further speculation is not warranted.

5. Atmospheric implications

or

The values of the rate coefficients for the reaction of ClO and OClO with O_3 of not more than 1×10^{-18} and 3×10^{-19} cm³ s⁻¹ (at 296 K and less at lower temperatures) respectively are too low to make these reactions of any significance in the earth's atmosphere.

The inhibiting effect of O_2 on the Cl_2 -photosensitized decomposition of O_3 has not been explained. The possibility that ClO might react with O_2

or ClOO with O_8 could be of potential atmospheric significance and a further understanding of this effect is desirable.

Acknowledgments

This work was supported by the Atmospheric Sciences Section of the National Science Foundation through Grant No. ATM 76-83378 and by the National Aeronautics and Space Administration through Grant No. NGL-39-009-003 and Contract No. NAS7-100 with the Jet Propulsion Laboratory.

References

- 1 F. Weigert, Ann. Phys. (Leipzig), 24 (1907) 243.
- 2 K. F. Bonhoeffer, Z. Phys., 12 (1923) 94.
- 3 M. Bodenstein, P. Harteck and E. Padelt, Z. Anorg. Allg. Chem., 147 (1925) 233.
- 4 M. Bodenstein and H. J. Schumacher, Z. Phys. Chem., Abt. B, 5 (1929) 233.
- 5 A. J. Allmand and J. W. T. Spinks, Nature (London), 124 (1929) 651.
- 6 A. J. Allmand and J. W. T. Spinks, J. Chem. Soc., (1931) 1652.
- 7 A. J. Allmand and J. W. T. Spinks, J. Chem. Soc., (1932) 599.
- 8 L. J. Heidt, G. B. Kistiakowsky and G. S. Forbes, J. Am. Chem. Soc., 55 (1933) 223.
- 9 G. K. Rollefson and A. C. Byrns, J. Am. Chem. Soc., 56 (1934) 364; 56 (1934) 1250; 56 (1934) 2245.
- 10 R. G. W. Norrish and G. H. J. Neville, J. Chem. Soc., (1934) 1864.
- 11 R. W. Davidson and D. G. Williams, J. Phys. Chem., 77 (1973) 2515.
- 12 M. A. A. Clyne, D. J. McKenney and R. T. Watson, J. Chem. Soc. Faraday Trans. 1, 71 (1975) 322.
- 13 C. L. Lin, S. Jaffe and W. B. DeMore, personal communication, 1977.
- 14 J. W. Birks, B. Shoemaker, T. J. Leck, R. A. Borders and L. J. Hart, J. Chem. Phys., 66 (1977) 4591.
- 15 R. Simonaitis and J. Heicklen, J. Phys. Chem., 78 (1974) 653.
- 16 R. S. Savoie and P. A. Giguère, Can. J. Chem., 40 (1962) 991.
- 17 J. G. Calvert and J. N. Pitts, Jr., Photochemistry, John Wiley, New York, 1966.
- 18 W. B. DeMore, personal communication, 1977.
- 19 M. S. Zahniser, F. Kaufman and J. G. Anderson, Chem. Phys. Lett., 37 (1976) 226.
- 20 M. J. Kurylo and W. Braun, Chem. Phys. Lett., 37 (1976) 232.
- 21 M.-T. Leu and W. B. DeMore, Chem. Phys. Lett., 41 (1976) 121.
- 22 R. Watson, G. Machado, S. Fischer and D. D. Davis, J. Chem. Phys., 65 (1976) 2126.
- 23 M. A. A. Clyne and W. S. Nip, J. Chem. Soc. Faraday Trans. 2, 72 (1976) 838.
- 24 M. S. Zahniser and F. Kaufman, J. Chem. Phys., 66 (1977) 3673.
- 25 N. Cohen and J. Heicklen, Compr. Chem. Kinet., 6 (1972) 1.
- 26 N. Basco and S. K. Dogra, Proc. R. Soc. London, Ser. A, 323 (1971) 29.
- 27 N. Basco and S. K. Dogra, Proc. R. Soc. London, Ser. A, 323 (1971) 401.
- 28 H. S. Johnston, E. D. Morris, Jr., and J. Van den Bogaerde, J. Am. Chem. Soc., 91 (1969) 7712.
- 29 C. H. Wu and H. S. Johnston, Bull. Soc. Chim. Belg., 81 (1972) 135.
- 30 M. A. A. Clyne and J. A. Coxon, Proc. R. Soc. London, Ser. A, 303 (1968) 207.
- 31 M. A. A. Clyne and I. F. White, Trans. Faraday Soc., 67 (1971) 2068.
- 32 M. A. A. Clyne and R. T. Watson, J. Chem. Soc. Faraday Trans. 1, 73 (1977) 1169.
- 33 R. T. Watson, Chemical Kinetics Data Survey VIII. Rate Constants of ClO_x of Atmospheric Interest, Nat. Bur. Stand. (U.S.) Rep. NBSIR 74-516, 1974.
- 34 E. S. Buffa and W. H. Taubert, Production Inventory Systems, Planning and Control, R. D. Irwin, Homewood, Ill., 1972.